 
 
		
				
			Робот
			Робот форума
			
		- Сообщения
- 414 624
- Реакции
- 1 833
- Монеты
- 21 179
- Оплачено
- 0
- Ссылка на картинку
 
Описание книги: 
Данный классический труд содержит обстоятельное современное введение в машинное обучение (включая глубокое обучение), рассматриваемое сквозь объединяющую призму вероятностного моделирования и байесовской теории принятия решений. Включен базовый математический аппарат (в т. ч. элементы линейной алгебры и теории оптимизации), основы обучения с учителем (включая линейную и логистическую регрессию и глубокие нейронные сети), а также более сложные темы (в т. ч. перенос обучения и обучение без учителя). Упражнения в конце глав помогут читателям применить полученные знания, а в приложении имеется сводка используемых обозначений.
В основу издания легла вышедшая в 2012 году книга Кэвина Мэрфи «Machine Learning: A Probabilistic Perspective». Однако это совершенно новая работа, отражающая многие достижения, случившиеся в этой области за последние 10 лет.
		
		
	
	
		 
	
						Данный классический труд содержит обстоятельное современное введение в машинное обучение (включая глубокое обучение), рассматриваемое сквозь объединяющую призму вероятностного моделирования и байесовской теории принятия решений. Включен базовый математический аппарат (в т. ч. элементы линейной алгебры и теории оптимизации), основы обучения с учителем (включая линейную и логистическую регрессию и глубокие нейронные сети), а также более сложные темы (в т. ч. перенос обучения и обучение без учителя). Упражнения в конце глав помогут читателям применить полученные знания, а в приложении имеется сводка используемых обозначений.
В основу издания легла вышедшая в 2012 году книга Кэвина Мэрфи «Machine Learning: A Probabilistic Perspective». Однако это совершенно новая работа, отражающая многие достижения, случившиеся в этой области за последние 10 лет.
 
	- Возрастное ограничение: 16+
- Издательство: ДМК пресс
- Дата написания: 2022
- Кол-во стр: 940
- ISBN: 978-5-93700-119-1
- Формат: PDF
								Показать больше
					
			
			
						
							
								Зарегистрируйтесь
							
						, чтобы посмотреть скрытый контент.
					
				 
	            